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The coupling between guided optical waves in magneto-optic fiber Bragg gratings (MFBGs) with linear
birefringence is investigated using the eigen-mode and coupled-mode approaches. The relationship be-
tween the polarization-dependent loss (PDL) and the eigen states of polarization (SOPs) in the MFBGs
is discussed. Only the MFBGs with low linear birefringence are applied to the peak PDL-based magnetic
field measurement, after which the linear dynamic range is determined using the relative magnitude of
linear and magnetically induced circular birefringence. In this letter, a theoretical model is presented to
explain the experimental results and help develop novel MFBG-based devices.
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With the extensive applications of fiber Bragg gratings
(FBGs) in optical communication systems[1] and opti-
cal sensors, composite or rare-earth-doped special FBGs
have also attracted attention for use in optical signal
processing[2,3]. Magneto-optic FBGs (MFBGs) comprise
a class of special FBGs associated with the magneto-
optical (MO) effects, such as the Faraday effect. In prin-
ciple, the rare-earth-doped FBGs or writing FBGs on
strain-tuned yttrium-iron-garnet (YIG) fibers[4] should
be used for large MO coefficients similar to those in
the mechanically microfabricated YIG planar gratings[5].
The MFBGs are promising candidates for current or mag-
netic field sensors and tunable dispersion compensation
modules[6]. Kersey et al. described a novel fiber probe for
monitoring alternating current (AC) high magnetic fields
by detecting the shift in Bragg condition of FBGs due
to magnetically induced circular birefringence[7]. Arce-
Diego et al. compared the shift values for silica and
terbium-doped optical fibers[8]. The magnetic tunability
of the MFBGs is expected to have a unique advantage
over the often-used tuning schemes in compensating or
tracking speed due to the immediate magnetic field re-
sponse of the MFBGs, which is free of any extra stretcher
(e.g., magnetostrictive rod).

In practice, the conventional FBGs used in optical com-
munications and fiber sensing may also be regarded as
MFBGs, to a certain extent, if the weak MO effects in
fibers are taken into account. However, a small linear
birefringence in standard fibers can lead to the quench-
ing of the Faraday effect[9]. Thus, to utilize the intrin-
sic MO effects in the silica FBGs at the present time,
one has to recur to high-resolution detection technolo-
gies, such as unbalanced Mach-Zehnder interferometers[9]

and polarization-dependent loss (PDL)[10,11]. However,
it should also be pointed out that the coupling of guided
optical waves (GOWs) in the MFBGs tends to be more
complicated than the case in the magneto-optic fibers
because of the grating reflection. To our knowledge,
thorough investigations have not yet been conducted on
the influence of linear birefringence on the propagation

characteristics of guided light in the MFBGs until now.
In this letter, we propose a theoretical model of MF-
BGs, which includes linear birefringence, MO effect (or
magnetically-induced circular birefringence), and grating
Bragg diffraction. In the MFBGs, the analytic expres-
sion of the eigen states of polarization (SOPs) can be
derived using the eigen-mode approach, in which the
above-mentioned effects are introduced one by one as
perturbations into the MFBG systems. These effects,
as a whole, may also be taken into account through the
coupled-mode approach.

In linear birefringent MFBGs, the MO coupling of
two orthogonal linear polarization modes depends on the
phase mismatch resulting from linear birefringence just
as in MO film waveguides[12]. The Bragg grating struc-
ture is responsible for the coupling between the incident
and reflected light beams. In the following, the Fara-
day MO effect and refractive index modulation of FBGs
are added in succession into a linear birefringent fiber
system; a lightwave coupling problem in the linear bire-
fringent MFBGs is partitioned into two sub-problems of
x-invariant MO waveguides and MO waveguide gratings.

The first sub-problem is necessary for the perturbation
method to obtain the total optical field in the MFBGs
of interest. Provided that the GOWs are confined to
the fiber core for fundamental modes, the optical field
E(x, y, z, t) associated with the MO perturbation can be
restructured from the eigen modes by

E(x, y, z, t) =
1

2
F(y, z)

[

ŷAy(x)e j(ωt−βyx)

+ẑAz(x)e
j(ωt−βzx)

]

+ c.c. , (1)

where the fast and slow axes of linearly birefringent fibers
are taken as the y and z axes, respectively; F(y, z) is
the normalized transversal distribution of the electric
field; Ay(x) and Az(x) are the complex amplitudes; c.c.
designates the complex conjugate of the former terms;
βy = nfk0 and βz = nsk0 are the propagation constants
of the y- and z-polarized GOWs at the angular frequency
ω, respectively (where, ns and nf are the refractive in-
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dices along the slow and fast axes, respectively); k0 = ω/c
(where c is the light speed in vacuum).

Similar to the MO film waveguides, substituting Eq.
(1) into the coupled-mode equations in the presence of
the MO perturbation[13] results in:











dAz(x)

dx
= −κme j∆βxAy(x)

dAy(x)

dx
= κme−j∆βxAz(x)

, (2)

where ∆β = βz −βy = (ns − nf) k0, and κm = k0f1M0x

2n0

=
k0∆nm is the MO coupling coefficient, in which f1
and M0x are the Faraday factor and static magnetiza-
tion along the x direction, respectively. In addition,
n0 = 1

2 (ns + nf) is the average refractive index of the

medium, and ∆nm = f1M0x

2n0

is the refractive index vari-
ation induced by the Faraday effect. From the view-
point of the Faraday rotation, it can be proven easily
that κm = VBB = φF, where VB and B are the Verdet
constant and the applied magnetic field, respectively, and
φF is the specific Faraday rotation. The solution of Eq.
(2) can be expressed by

B(x) = M(x) ·B(0), (3)

where B(x) =





Ay(x)ej
∆β
2 x

Az(x)e
−j

∆β
2 x



 and M(x) =

[

cosκx+ j cos τ sinκx sin τ sinκx
− sin τ sinκx cosκx− j cos τ sinκx

]

, in

which sin τ = κm

κ
and cos τ = ∆β

2κ
= κb

κ
, κ =

√

(

∆β
2

)2

+ |κm|2 =
√

κ2
b + κ2

m, κb = ∆β
2 =

1
2 (ns − nf) k0 = k0∆nb, and ∆nb = 1

2 (ns − nf) is the
refractive index change resulting from the linear bire-
fringence. Utilizing the transform of unit basis vec-
tors ê+= ŷ+jηẑ√

1+η2
and ê− = ηŷ−jẑ√

1+η2
with the ellipticity

η = tan τ
2 , one can obtain the corresponding elliptically

polarized components expressed by

E0+(x) = cos(τ/2) [Ay(0) − jηAz(0)] exp(jκx)

= E0+(0) exp(jκx)

E0−(x) = cos(τ/2) [ηAy(0) + jAz(0)] exp(−jκx)

= E0−(0) exp(−jκx)

. (4)

Obviously, E0+(x) and E0−(x) are the two orthogonal
eigenwaves with the effective indices n± = n0±κ0 related
to linear and magnetically induced circular birefringence.
Thus, according to Eq. (3), Eq. (1) can also be rewritten
as

E(x, y, z, t) =
1

2
F(y, z)

[

ê+E0+(0) exp(jκx)

+ ê−E0−(0) exp(−jκx)
]

ej(ωt−β0x) + c.c., (5)

where β0 = n0k0, and E0+(0) and E0−(0) are the inci-
dent optical fields at x = 0. From Eq. (5), the propa-
gation constants of the elliptical eigenwaves can be ex-
pressed as β± = β0 ± κ and are dependent on the SOPs
along with the magnetization direction. The polarization
states of the elliptical eigenwaves P± can be expressed by
the following Jones matrix forms:

P+ =
1

√

1 + η2

(

1
jη

)

,P− =
1

√

1 + η2

(

η
−j

)

. (6)

Subsequently, a linear birefringent MFBG may be re-
garded as the linear birefringent MO fiber perturbed by
the refractive index modulation of FBGs. According to
the same coupled-mode analysis used in Ref. [14], the
isotropic index grating perturbation does not change the
polarization states of the eigen-modes (also called the
eigenwaves of MFBGs), just as in the linear birefringent
fiber; however, it has a great influence on the amplitude
distribution. In general, the polarization states of both
eigenwaves are orthogonal to each other and remain fixed
inside the MFBGs. The ellipticity of the eigen SOPs de-
pends on the relative magnitude of the linear and mag-
netically induced circular birefringence. For the uniform
index grating ∆n(x) = 2∆ng cos(2πx/Λ), where 2∆ng is
the amplitude of index variation over a grating period Λ,
the transmission and reflection coefficients of the two el-
liptical eigenwaves in the linear birefringent MFBGs (t±
and r±) can be expressed by



















t± =
Ef

±(L)

Ef
±(0)

=
q±

q± cos q±L+ jδ± sin q±L

r± =
Eb

±(0)

Ef
±(0)

=
−jκg sin(q±L)

q± cos(q±L) + jδ± sin(q±L)

, (7)

where L is the length of the uniform MFBG, the sub-
script “±” corresponds to the two orthogonal eigenwaves,
and the superscripts “f” and “b” indicate the forward
and backward GOWs, respectively. In addition, δ± =
β±(ω) − βB = n±k0 − π/Λ = (ω − ωB)n±/c, βB = π/Λ,

ωB = βBc/n±, n± = n0 ± κ/k0, q± =
√

δ2± − κ2
g, and

κg=k0∆ng > 0. Equation (7) expresses the relation be-
tween the birefringent effects and the grating coupling
in terms of the parameters κ and κg for the first time,
regardless of having a form, which is similar to the case
of conventional non-magnetic FBGs. From Eq. (7), the
PDL of the MFBGs may easily be calculated as well.

In the coupled-mode, the contributions of the Faraday
MO effect and grating index are regarded as a whole
and added simultaneously into a linear birefringent fiber
model, similar to the procedure used in Ref. [12]. In
the slowly varying envelope approximation, the coupled-
mode equations are of the matrix form given by

∂

∂x













Af
y(x)

Af
z(x)

Ab
y(x)

Ab
z(x)













=













−j(β0 − βB) −κme j∆βx −jκge
j∆βx 0

κme
−j∆βx −j(β0 − βB) 0 −jκge

−j∆βx

jκge
−j∆βx 0 j(β0 − βB) κme−j∆βx

0 jκge
j∆βx −κme

j∆βx j(β0 − βB)

























Af
y(x)

Af
z(x)

Ab
y(x)

Ab
z (x)













. (8)
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In general, Eq. (8) can be solved by employing the nu-
merical method, after which the optical field distribution
inside the linearly birefringent MFBGs and information
on the eigen polarization states can be obtained.

The PDL can be derived from the transmittivities of
the eigenwaves. PDL is defined as the maximum po-
larization sensitivity of a device over all possible input
polarization states and is expressed as

PDL(λ) = 10 lg
Tmax(λ)

Tmin(λ)
, (9)

where Tmax and Tmin denote the maximal and minimal
power transmittivities through the device, respectively.
To determine Tmax and Tmin, we introduce a function

Q[λ; (η, θ)] = 10
∣

∣

∣
lg T [λ;(η,θ)]

T [λ;(η∗,θ∗)]

∣

∣

∣
, where T is the power

transmittivity corresponding to each of the two orthogo-
nal input SOPs, namely, (η, θ) and (η∗, θ∗). Our calcu-
lation also shows that the equal peak values appear just
at the eigen SOPs. Thus, the PDL of the MFBGs can be
calculated from

PDL(λ) = max {Q [λ; (η, θ)]} =

∣

∣

∣

∣

10 lg
T+(λ)

T−(λ)

∣

∣

∣

∣

, (10)

where T±(λ) = |t±(λ)|2 are the power transmission
spectra for the two orthogonal eigenwaves. Equation
(10) has also been validated according to the princi-
ple of PDL measurement based on the Mueller matrix
method[15], in which Tmax = m11 +

√

m2
12 +m2

13 +m2
14 ,

Tmin = m11−
√

m2
12 +m2

13 +m2
14, andm1k(k = 1, 2, 3, 4)

are the elements of the Mueller matrix and can be
derived from Eqs. (6) and (7) by the coordinate
transformation.

In the birefringent FBGs in the absence of the Faraday
effect, κm = 0 and M(x) is diagonal because sin τ = 0,
cos τ = 1, and κ = κb, indicating that the y and z axes
are the so-called eigen coordinate axes. In this case, Eq.
(7) is reduced to the same results as given in Ref. [15].
The resulting PDL spectral curve has two symmetric
peaks, and both of the peak PDL and the corresponding
wavelength separation depend on the magnitude of linear
birefringence (Fig. 1). The peak PDL may also be used
to measure the linear birefringence of the FBGs only in
the range of low linear birefringence (∆nb ≤ 5 × 10−5

for our calculation). In the case of a larger linear bire-
fringence, one can resort to the change of wavelength
spacing between the PDL peaks.

Fig. 1. Variations of the peak PDL and wavelength separation
with linear birefringence.

Fig. 2. Dependencies of peak PDL on magnetic field.

In a similar manner, for the linear birefringent MF-
BGs, the magnetic field dependency of PDL spectra
can also be obtained from Eqs. (7) and (10) (Fig. 2).
However, the applied magnetic fields hardly lead to the
change of the wavelength separation between two sym-
metric PDL peaks because of the low Verdet constant
VB = 1.59 × 10−33ν2 rad/(Gs·m) for the silica fibers, in
which ν is the optical frequency in hertz[16]. The peak
PDL increases with the linear birefringence inside the
MFBG, resulting in the lower limit of linearly measur-
able magnetic field and magnetic field sensitivity of the
peak PDL (Fig. 2). The linear dynamic range of the
peak PDL-based magnetic field measurement is depen-
dent on the relative magnitude of linear and magnetically
induced circular birefringence. The YIG-based MFBGs
and one-dimensional magneto-photonic crystals[17] both
have the potential to be used in the magnetic field mea-
surement with high sensitivity.

The theoretical model of linearly birefringent MFBGs
presented here can also be used to explain qualitatively
the effect of linear birefringence on the PDL of the
MFBG in the experiments. Peng et al. have measured
the peak PDL of fiber grating under the applied mag-
netic field and attributed the difference of experimental
and simulated results to the inherent PDL of FBG[11].
Based on the same parameters used in the experiment
(central wavelength λ0 = 1547.54 nm, Λ = 535 nm,
∆ng = 1 × 10−4, and VB = 8 × 10−5 rad/(Gs · m)), we
present our calculation results in Fig. 3. The peak PDL
increased with ∆nb and is similar to the result in Fig. 1.
The curve with ∆nb = 2.55 × 10−7 is very close to the
experimental data for higher magnetic fields, but there is
a small discrepancy in the range of small magnetic fields
B < 900 Gs corresponding to ∆nm < 2×10−8, which is
one order of magnitude smaller than linear birefringence.

To demonstrate further the validity of the theoreti-
cal model of the MFBG, we conducted an investigation
into the influence of linear birefringence on the magnetic
field sensitivity of the uniform MFBG with a fiber-type
polarization controller (FPC). To a great extent, the
FPC acted as a compensator for the external fiber linear
birefringence. At the same time, the FPC was used to
adjust the linear birefringence outside the MFBG and
the corresponding PDL was measured separately to be
0.206 dB. In theory, the total PDL was calculated from
the Jones matrices of the MFBG and FPC, in which the
rotation angle between their birefringence axes were also
taken into account. Our experimental and theoretical
results are illustrated in Fig. 4. The parameters of the
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Fig. 3. Comparison of our theoretical results and experimen-
tal data in Ref. [11].

Fig. 4. Comparison of our theoretical and experimental re-
sults.

MFBG used in the experiment are labeled in the figure.
The wavelength of the optical source was λ = 1550.9 nm.
Given that the fitted theoretical curve corresponds to the
rotation angle ψ = 0.932 rad and ∆nb = 2 × 10−7, it is
clear that the theoretical model may be used to fit the
experimental data well. A systematic investigation will
be described in a future article. Meanwhile, the pilot
study has shown that the linear birefringence inside the
MFBG cannot be compensated completely by adjusting
the FPC, although the inherent PDL has been eliminated
in the absence of magnetic field. The control of the in-
terior linear birefringence is the crucial factor that must
be considered in the improvement of the magnetic field
sensitivity of the MFBG. At the same time, the PDL
contribution of the exterior devices should be as small as
possible.

In conclusion, according to the coupled-mode pertur-
bation theory, the interaction between the Faraday effect
and the grating Bragg diffraction in linear birefringent
MFBGs is investigated analytically and numerically us-
ing the eigen-mode and coupled-mode approaches, re-
spectively. The first method gives expression to the
transmittivity of the eigen SOPs, which is useful for the

derivation of the PDL spectrum. The magnetic-field
dependency of the peak PDL and influence of intrinsic
linear birefringence have also been analyzed. Both the
magnetic-field sensitivity and linearly dynamic range of
peak PDL have been shown to reduce with the increase of
linear birefringence. The MFBG with small linear bire-
fringence has also been applied to the peak PDL-based
magnetic-field measurement. By comparison, the second
method is more efficient for analyzing the SOP evolu-
tion inside the MFBG. Finally, we utilize the theoretical
model of the MFBG to explain the available experimental
data.
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